Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Front Genet ; 14: 1213917, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37674481

RESUMO

The recent development of high-throughput sequencing platforms provided impressive insights into the field of human genetics and contributed to considering structural variants (SVs) as the hallmark of genome instability, leading to the establishment of several pathologic conditions, including neoplasia and neurodegenerative and cognitive disorders. While SV detection is addressed by next-generation sequencing (NGS) technologies, the introduction of more recent long-read sequencing technologies have already been proven to be invaluable in overcoming the inaccuracy and limitations of NGS technologies when applied to resolve wide and structurally complex SVs due to the short length (100-500 bp) of the sequencing read utilized. Among the long-read sequencing technologies, Oxford Nanopore Technologies developed a sequencing platform based on a protein nanopore that allows the sequencing of "native" long DNA molecules of virtually unlimited length (typical range 1-100 Kb). In this review, we focus on the bioinformatics methods that improve the identification and genotyping of known and novel SVs to investigate human pathological conditions, discussing the possibility of introducing nanopore sequencing technology into routine diagnostics.

2.
Am J Hematol ; 98(10): 1520-1531, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37399248

RESUMO

Transformation from chronic (CP) to blast phase (BP) in myeloproliferative neoplasm (MPN) remains poorly characterized, and no specific mutation pattern has been highlighted. BP-MPN represents an unmet need, due to its refractoriness to treatment and dismal outcome. Taking advantage of the granularity provided by single-cell sequencing (SCS), we analyzed paired samples of CP and BP in 10 patients to map clonal trajectories and interrogate target copy number variants (CNVs). Already at diagnosis, MPN present as oligoclonal diseases with varying ratio of mutated and wild-type cells, including cases where normal hematopoiesis was entirely surmised by mutated clones. BP originated from increasing clonal complexity, either on top or independent of a driver mutation, through acquisition of novel mutations as well as accumulation of clones harboring multiple mutations, that were detected at CP by SCS but were missed by bulk sequencing. There were progressive copy-number imbalances from CP to BP, that configured distinct clonal profiles and identified recurrences in genes including NF1, TET2, and BCOR, suggesting an additional level of complexity and contribution to leukemic transformation. EZH2 emerged as the gene most frequently affected by single nucleotide and CNVs, that might result in EZH2/PRC2-mediated transcriptional deregulation, as supported by combined scATAC-seq and snRNA-seq analysis of the leukemic clone in a representative case. Overall, findings provided insights into the pathogenesis of MPN-BP, identified CNVs as a hitherto poorly characterized mechanism and point to EZH2 dysregulation as target. Serial assessment of clonal dynamics might potentially allow early detection of impending disease transformation, with therapeutic implications.


Assuntos
Variações do Número de Cópias de DNA , Transtornos Mieloproliferativos , Humanos , Transtornos Mieloproliferativos/patologia , Mutação , Crise Blástica/genética , Análise de Célula Única , Evolução Clonal/genética
3.
Leukemia ; 37(5): 1068-1079, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36928007

RESUMO

Clonal myeloproliferation and development of bone marrow (BM) fibrosis are the major pathogenetic events in myelofibrosis (MF). The identification of novel antifibrotic strategies is of utmost importance since the effectiveness of current therapies in reverting BM fibrosis is debated. We previously demonstrated that osteopontin (OPN) has a profibrotic role in MF by promoting mesenchymal stromal cells proliferation and collagen production. Moreover, increased plasma OPN correlated with higher BM fibrosis grade and inferior overall survival in MF patients. To understand whether OPN is a druggable target in MF, we assessed putative inhibitors of OPN expression in vitro and identified ERK1/2 as a major regulator of OPN production. Increased OPN plasma levels were associated with BM fibrosis development in the Romiplostim-induced MF mouse model. Moreover, ERK1/2 inhibition led to a remarkable reduction of OPN production and BM fibrosis in Romiplostim-treated mice. Strikingly, the antifibrotic effect of ERK1/2 inhibition can be mainly ascribed to the reduced OPN production since it could be recapitulated through the administration of anti-OPN neutralizing antibody. Our results demonstrate that OPN is a novel druggable target in MF and pave the way to antifibrotic therapies based on the inhibition of ERK1/2-driven OPN production or the neutralization of OPN activity.


Assuntos
Osteopontina , Mielofibrose Primária , Mielofibrose Primária/tratamento farmacológico , Mielofibrose Primária/metabolismo , Mielofibrose Primária/patologia , Animais , Camundongos , Modelos Animais de Doenças , Transdução de Sinais/efeitos dos fármacos , Osteopontina/antagonistas & inibidores , Osteopontina/sangue , Osteopontina/metabolismo , Fibrose/tratamento farmacológico , Humanos
4.
Methods Cell Biol ; 171: 81-109, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35953207

RESUMO

Philadelphia-negative myeloproliferative neoplasms (pH-MPNs) origin from the clonal expansion of hematopoietic stem cells with acquired mutations leading to uncontrolled proliferation of differentiated myeloid cells. The main entities of Ph-MPNs are represented by Polycythemia Vera (PV), Essential Thrombocythemia (ET) and Myelofibrosis (MF) that are characterized by microvascular disorders, thrombosis and bleeding, splenomegaly secondary to extramedullary hematopoiesis, various degree of bone marrow fibrosis and a progressive risk of leukemic transformation. Somatic mutations in myeloid genes including JAK2, CALR, and MPL cause the constitutive activation of the Janus Kinase 2 (JAK)/signal transducer and activator of transcription (STAT) pathway that confers proliferative and differentiative advantage to mutated hematopoietic progenitors and ultimately drives the development of a Ph-MPNs phenotype. Beyond the JAK/STAT axis, a wide number of intracellular signaling pathways were found deregulated in Ph-MPNs including the phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) constitutive activation. In this chapter, we provide a detailed protocol for the immunoblotting assisted assessment of Ph-MPNs pathways activation. This protocol can be easily adapted to study protein expression and phosphorylation of hematopoietic stem progenitors and differentiated cell lineages.


Assuntos
Transtornos Mieloproliferativos , Policitemia Vera , Mielofibrose Primária , Calreticulina/genética , Humanos , Immunoblotting , Janus Quinase 2/genética , Mutação , Transtornos Mieloproliferativos/genética , Fosfatidilinositol 3-Quinases/genética , Policitemia Vera/genética , Mielofibrose Primária/genética , Proteínas Proto-Oncogênicas c-akt/genética , Células-Tronco , Serina-Treonina Quinases TOR/genética
5.
Sci Transl Med ; 14(657): eabg3277, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35947676

RESUMO

Crescentic glomerulonephritis is characterized by vascular necrosis and parietal epithelial cell hyperplasia in the space surrounding the glomerulus, resulting in the formation of crescents. Little is known about the molecular mechanisms driving this process. Inducing crescentic glomerulonephritis in two Pax2Cre reporter mouse models revealed that crescents derive from clonal expansion of single immature parietal epithelial cells. Preemptive and delayed histone deacetylase inhibition with panobinostat, a drug used to treat hematopoietic stem cell disorders, attenuated crescentic glomerulonephritis with recovery of kidney function in the two mouse models. Three-dimensional confocal microscopy and stimulated emission depletion superresolution imaging of mouse glomeruli showed that, in addition to exerting an anti-inflammatory and immunosuppressive effect, panobinostat induced differentiation of an immature hyperplastic parietal epithelial cell subset into podocytes, thereby restoring the glomerular filtration barrier. Single-cell RNA sequencing of human renal progenitor cells in vitro identified an immature stratifin-positive cell subset and revealed that expansion of this stratifin-expressing progenitor cell subset was associated with a poor outcome in human crescentic glomerulonephritis. Treatment of human parietal epithelial cells in vitro with panobinostat attenuated stratifin expression in renal progenitor cells, reduced their proliferation, and promoted their differentiation into podocytes. These results offer mechanistic insights into the formation of glomerular crescents and demonstrate that selective targeting of renal progenitor cells can attenuate crescent formation and the deterioration of kidney function in crescentic glomerulonephritis in mice.


Assuntos
Glomerulonefrite , Podócitos , Animais , Modelos Animais de Doenças , Glomerulonefrite/tratamento farmacológico , Humanos , Rim/metabolismo , Camundongos , Panobinostat/uso terapêutico , Podócitos/metabolismo , Células-Tronco/metabolismo
7.
Expert Rev Anticancer Ther ; 22(8): 835-843, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35763287

RESUMO

INTRODUCTION: Decreasing efficacy over time and initial suboptimal response to Janus kinase (JAK) inhibitors such as ruxolitinib in a subset of patients are critical clinical challenges associated with myeloproliferative neoplasms (MPNs), primarily myelofibrosis. AREAS COVERED: The role of phosphatidylinositol-3 kinase (PI3K) in MPN disease progression and treatment resistance and as a potential therapeutic target in patients who experience loss of response to JAK inhibition is discussed. Understanding the complex signaling networks involved in the pathogenesis of MPNs has identified potentially novel therapeutic targets and treatment strategies, such as inhibiting other signaling pathways in addition to the JAK/signal transducer and activator of transcription (STAT) pathway. PI3K plays a crucial role downstream of JAK signaling in rescuing tumor cell proliferation, with PI3Kδ being particularly important in hematologic malignancies. Concurrent targeting of both PI3K and JAK/STAT pathways may offer an innovative therapeutic strategy to maximize efficacy. EXPERT OPINION: Based on our understanding of the underlying mechanisms and the role of PI3K pathway signaling in the loss of response or resistance to JAK inhibitor treatment and initial results from clinical studies, the combination of parsaclisib (PI3Kδ inhibitor) and ruxolitinib holds great clinical potential. If confirmed in larger clinical trials, parsaclisib may provide more treatment options and improve clinical outcomes for patients with MPNs.


Assuntos
Transtornos Mieloproliferativos , Neoplasias , Humanos , Janus Quinase 2 , Transtornos Mieloproliferativos/tratamento farmacológico , Neoplasias/tratamento farmacológico , Fosfatidilinositol 3-Quinase , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
9.
Antioxidants (Basel) ; 11(1)2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35052617

RESUMO

Myelofibrosis (MF) is the Philadelphia-negative myeloproliferative neoplasm characterized by the worst prognosis and no response to conventional therapy. Driver mutations in JAK2 and CALR impact on JAK-STAT pathway activation but also on the production of reactive oxygen species (ROS). ROS play a pivotal role in inflammation-induced oxidative damage to cellular components including DNA, therefore leading to greater genomic instability and promoting cell transformation. In order to unveil the role of driver mutations in oxidative stress, we assessed ROS levels in CD34+ hematopoietic stem/progenitor cells of MF patients. Our results demonstrated that ROS production in CD34+ cells from CALR-mutated MF patients is far greater compared with patients harboring JAK2 mutation, and this leads to increased oxidative DNA damage. Moreover, CALR-mutant cells show less superoxide dismutase (SOD) antioxidant activity than JAK2-mutated ones. Here, we show that high plasma levels of total antioxidant capacity (TAC) correlate with detrimental clinical features, such as high levels of lactate dehydrogenase (LDH) and circulating CD34+ cells. Moreover, in JAK2-mutated patients, high plasma level of TAC is also associated with a poor overall survival (OS), and multivariate analysis demonstrated that high TAC classification is an independent prognostic factor allowing the identification of patients with inferior OS in both DIPSS lowest and highest categories. Altogether, our data suggest that a different capability to respond to oxidative stress can be one of the mechanisms underlying disease progression of myelofibrosis.

12.
Biomark Res ; 9(1): 83, 2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34772467

RESUMO

Eosinophilia represents a group of diseases with heterogeneous pathobiology and clinical phenotypes. Among the alterations found in primary Eosinophilia, gene fusions involving PDGFRα, PDGFRß, FGFR1 or JAK2 represent the biomarkers of WHO-defined "myeloid and lymphoid neoplasms with eosinophilia". The heterogeneous nature of genomic aberrations and the promiscuity of fusion partners, may limit the diagnostic accuracy of current cytogenetics approaches. To address such technical challenges, we exploited a nanopore-based sequencing assay to screen patients with primary Eosinophilia. The comprehensive sequencing approach described here enables the identification of genomic fusion in 60 h, starting from DNA purified from whole blood.

13.
Blood Adv ; 5(8): 2184-2195, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33890979

RESUMO

Calreticulin (CALR), an endoplasmic reticulum-associated chaperone, is frequently mutated in myeloproliferative neoplasms (MPNs). Mutated CALR promotes downstream JAK2/STAT5 signaling through interaction with, and activation of, the thrombopoietin receptor (MPL). Here, we provide evidence of a novel mechanism contributing to CALR-mutated MPNs, represented by abnormal activation of the interleukin 6 (IL-6)-signaling pathway. We found that UT7 and UT7/mpl cells, engineered by clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) to express the CALR type 1-like (DEL) mutation, acquired cytokine independence and were primed to the megakaryocyte (Mk) lineage. Levels of IL-6 messenger RNA (mRNA), extracellular-released IL-6, membrane-associated glycoprotein 130 (gp130), and IL-6 receptor (IL-6R), phosphorylated JAK1 and STAT3 (p-JAK1 and p-STAT3), and IL-6 promoter region occupancy by STAT3 all resulted in increased CALR DEL cells in the absence of MPL stimulation. Wild-type, but not mutated, CALR physically interacted with gp130 and IL-6R, downregulating their expression on the cell membrane. Agents targeting gp130 (SC-144), IL-6R (tocilizumab [TCZ]), and cell-released IL-6 reduced proliferation of CALR DEL as well as CALR knockout cells, supporting a mutated CALR loss-of-function model. CD34+ cells from CALR-mutated patients showed increased levels of IL-6 mRNA and p-STAT3, and colony-forming unit-Mk growth was inhibited by either SC144 or TCZ, as well as an IL-6 antibody, supporting cell-autonomous activation of the IL-6 pathway. Targeting IL-6 signaling also reduced colony formation by CD34+ cells of JAK2V617F-mutated patients. The combination of TCZ and ruxolitinib was synergistic at very low nanomolar concentrations. Overall, our results suggest that target inhibition of IL-6 signaling may have therapeutic potential in CALR, and possibly JAK2V617F, mutated MPNs.


Assuntos
Calreticulina , Transtornos Mieloproliferativos , Calreticulina/genética , Humanos , Interleucina-6/genética , Mutação , Transtornos Mieloproliferativos/tratamento farmacológico , Transtornos Mieloproliferativos/genética , Transdução de Sinais
14.
Cancer Res ; 81(12): 3387-3401, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33771895

RESUMO

Although macrophages (MΦ) are known to play a central role in neuropathic pain, their contribution to cancer pain has not been established. Here we report that depletion of sciatic nerve resident MΦs (rMΦ) in mice attenuates mechanical/cold hypersensitivity and spontaneous pain evoked by intraplantar injection of melanoma or lung carcinoma cells. MΦ-colony stimulating factor (M-CSF) was upregulated in the sciatic nerve trunk and mediated cancer-evoked pain via rMΦ expansion, transient receptor potential ankyrin 1 (TRPA1) activation, and oxidative stress. Targeted deletion of Trpa1 revealed a key role for Schwann cell TRPA1 in sciatic nerve rMΦ expansion and pain-like behaviors. Depletion of rMΦs in a medial portion of the sciatic nerve prevented pain-like behaviors. Collectively, we identified a feed-forward pathway involving M-CSF, rMΦ, oxidative stress, and Schwann cell TRPA1 that operates throughout the nerve trunk to signal cancer-evoked pain. SIGNIFICANCE: Schwann cell TRPA1 sustains cancer pain through release of M-CSF and oxidative stress, which promote the expansion and the proalgesic actions of intraneural macrophages. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/12/3387/F1.large.jpg.


Assuntos
Dor do Câncer/patologia , Hiperalgesia/patologia , Macrófagos/imunologia , Melanoma Experimental/complicações , Nervos Periféricos/imunologia , Células de Schwann/imunologia , Canal de Cátion TRPA1/fisiologia , Animais , Dor do Câncer/etiologia , Dor do Câncer/metabolismo , Feminino , Hiperalgesia/etiologia , Hiperalgesia/metabolismo , Neoplasias Pulmonares/complicações , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
15.
Blood Adv ; 4(15): 3677-3687, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32777067

RESUMO

The dysregulation of the JAK/STAT pathway drives the pathogenesis of myelofibrosis (MF). Recently, several JAK inhibitors (JAKis) have been developed for treating MF. Select mutations (MTs) have been associated with impaired outcomes and are currently incorporated in molecularly annotated prognostic models. Mutations of RAS/MAPK pathway genes are frequently reported in cancer and at low frequencies in MF. In this study, we investigated the phenotypic, prognostic, and therapeutic implications of NRASMTs, KRASMTs, and CBLMTs (RAS/CBLMTs) in 464 consecutive MF patients. A total of 59 (12.7%) patients had RAS/CBLMTs: NRASMTs, n = 25 (5.4%); KRASMTs, n = 13 (2.8%); and CBLMTs, n = 26 (5.6%). Patients with RAS/CBLMTs were more likely to present with high-risk clinical and molecular features. RAS/CBLMTs were associated with inferior overall survival compared with patients without MTs and retained significance in a multivariate model, including the Mutation-Enhanced International Prognostic Score System (MIPSS70) risk factors and cytogenetics; however, inclusion of RAS/CBLMTs in molecularly annotated prognostic models did not improve the predictive power of the latter. The 5-year cumulative incidence of leukemic transformation was notably higher in the RAS/CBLMT cohort. Among 61 patients treated with JAKis and observed for a median time of 30 months, the rate of symptoms and spleen response at 6 months was significantly lower in the RAS/CBLMT cohort. Logistic regression analysis disclosed a significant inverse correlation between RAS/CBLMTs and the probability of achieving a symptom or spleen response that was retained in multivariate analysis. In summary, our study showed that RAS/CBLMTs are associated with adverse phenotypic features and survival outcomes and, more important, may predict reduced response to JAKis.


Assuntos
Inibidores de Janus Quinases , Mielofibrose Primária , Genes ras , Humanos , Mutação , Mielofibrose Primária/diagnóstico , Mielofibrose Primária/tratamento farmacológico , Mielofibrose Primária/genética , Prognóstico
16.
Expert Opin Ther Targets ; 24(7): 615-628, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32366208

RESUMO

INTRODUCTION: Polycythemia vera (PV) is the most common myeloproliferative neoplasm (MPN). PV is characterized by erythrocytosis, leukocytosis, thrombocytosis, increased hematocrit, and hemoglobin in the peripheral blood. Splenomegaly and myelofibrosis often occur in PV patients. Almost all PV patients harbor a mutation in the JAK2 gene, mainly represented by the JAK2V617F point mutation. AREAS COVERED: This article examines the recent in vitro and in vivo available models of PV and moreover, it offers insights on emerging biomarkers and therapeutic targets. The evidence from mouse models, resembling a PV-like phenotype generated by different technical approaches, is discussed. The authors searched PubMed, books, and clinicaltrials.gov for original and review articles and drugs development status including the terms Myeloproliferative Neoplasms, Polycythemia Vera, erythrocytosis, hematocrit, splenomegaly, bone marrow fibrosis, JAK2V617F, Hematopoietic Stem Cells, MPN cytoreductive therapy, JAK2 inhibitor, histone deacetylase inhibitor, PV-like phenotype, JAK2V617F BMT, transgenic JAK2V617F mouse, JAK2 physiologic promoter. EXPERT OPINION: Preclinical models of PV are valuable tools for enabling an understanding of the pathophysiology and the molecular mechanisms of the disease. These models provide new biological insights on the contribution of concomitant mutations and the efficacy of novel drugs in a 'more faithful' setting. This may facilitate an enhanced understanding of pathogenetic mechanisms and targeted therapy.


Assuntos
Janus Quinase 2/genética , Terapia de Alvo Molecular , Policitemia Vera/tratamento farmacológico , Animais , Modelos Animais de Doenças , Desenvolvimento de Medicamentos , Humanos , Camundongos , Mutação Puntual , Policitemia Vera/genética , Policitemia Vera/fisiopatologia , Mielofibrose Primária/tratamento farmacológico , Mielofibrose Primária/etiologia , Esplenomegalia/tratamento farmacológico , Esplenomegalia/etiologia
19.
Sci Rep ; 9(1): 10558, 2019 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-31332222

RESUMO

Somatic mutations of calreticulin (CALR) have been described in approximately 60-80% of JAK2 and MPL unmutated Essential Thrombocythemia and Primary Myelofibrosis patients. CALR is an endoplasmic reticulum (ER) chaperone responsible for proper protein folding and calcium retention. Recent data demonstrated that the TPO receptor (MPL) is essential for the development of CALR mutant-driven Myeloproliferative Neoplasms (MPNs). However, the precise mechanism of action of CALR mutants haven't been fully unraveled. In this study, we showed that CALR mutants impair the ability to respond to the ER stress and reduce the activation of the pro-apoptotic pathway of the unfolded protein response (UPR). Moreover, our data demonstrated that CALR mutations induce increased sensitivity to oxidative stress, leading to increase oxidative DNA damage. We finally demonstrated that the downmodulation of OXR1 in CALR-mutated cells could be one of the molecular mechanisms responsible for the increased sensitivity to oxidative stress mediated by mutant CALR. Altogether, our data identify novel mechanisms collaborating with MPL activation in CALR-mediated cellular transformation. CALR mutants negatively impact on the capability of cells to respond to oxidative stress leading to genomic instability and on the ability to react to ER stress, causing resistance to UPR-induced apoptosis.


Assuntos
Calreticulina/genética , Calreticulina/metabolismo , Mutação INDEL , Estresse Oxidativo/genética , Resposta a Proteínas não Dobradas/genética , Transformação Celular Neoplásica/genética , Reparo do DNA/genética , Regulação para Baixo , Estresse do Retículo Endoplasmático/genética , Técnicas de Silenciamento de Genes , Humanos , Células K562 , Proteínas Mitocondriais/antagonistas & inibidores , Proteínas Mitocondriais/genética , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Fenantrenos/farmacologia , Mielofibrose Primária/genética , Mielofibrose Primária/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Superóxido Dismutase/metabolismo , Trombocitemia Essencial/genética , Trombocitemia Essencial/metabolismo , Transcriptoma
20.
Blood Cancer J ; 8(12): 122, 2018 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-30467377

RESUMO

Refractoriness to ruxolitinib in patients with myelofibrosis (MF) was associated with clonal evolution; however, whether genetic instability is promoted by ruxolitinib remains unsettled. We evaluated the mutation landscape in 71 MF patients receiving ruxolitinib (n = 46) and hydroxyurea (n = 25) and correlated with response. A spleen volume response (SVR) was obtained in 57% and 12%, respectively. Highly heterogenous patterns of mutation acquisition/loss and/or changes of variant allele frequency (VAF) were observed in the 2 patient groups without remarkable differences. In patients receiving ruxolitinib, driver mutation type and high-molecular risk profile (HMR) at baseline did not impact on response rate, while HMR and sole ASXL1 mutations predicted for SVR loss at 3 years. In patients with SVR, a decrease of ≥ 20% of JAK2V617F VAF predicted for SVR duration. VAF increase of non-driver mutations and clonal progression at follow-up correlated with SVR loss and treatment discontinuation, and clonal progression also predicted for shorter survival. These data indicate that (i) ruxolitinib does not appreciably promote clonal evolution compared with hydroxyurea, (ii) VAF increase of pre-existing and/or (ii) acquisition of new mutations while on treatment correlated with higher rate of discontinuation and/or death, and (iv) reduction of JAK2V617F VAF associated with SVR duration.


Assuntos
Hidroxiureia/uso terapêutico , Mutação , Mielofibrose Primária/tratamento farmacológico , Mielofibrose Primária/genética , Pirazóis/uso terapêutico , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores , Análise Mutacional de DNA , Feminino , Seguimentos , Humanos , Hidroxiureia/administração & dosagem , Hidroxiureia/efeitos adversos , Masculino , Pessoa de Meia-Idade , Nitrilas , Mielofibrose Primária/diagnóstico , Pirazóis/administração & dosagem , Pirazóis/efeitos adversos , Pirimidinas , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA